亚洲v日韩v精品v无码专区久久_免费国产黄网站在线观看_女人A级毛片19毛水真多_大地资源网中文第一页_美女胸18下看禁止免费视频51_久久99精品热在线观看

Welcome to the official website of Zhongshan Hochen Automation Equipment Co., Ltd.
  • 1
  • 2

NEWS

News Details
Position: Home> News Details
Brief Discussion on Internal Short Circuit Simulation of Lithium Ion Battery
Category: Industry Information
Date: 2018-07-13
Click: 5383
Author: admin
Collection:
Experiments have shown that while the battery is heated to the melting point of the wax, the lithium ion battery has an internal short circuit and the battery temperature rises rapidly [5].


The
 safety of the power battery during use is our first consideration. Therefore , we have also established a strict safety assessment system for the evaluation of power batteries , such as extrusion, acupuncture, overcharge, over discharge and short circuit. , respectively, to simulate the abuse encountered by lithium-ion batteries in actual use . Among all the security issues, one is the most difficult to simulate - an internal short circuit. As the name suggests, internal short-circuit refers to the presence of excess material in the battery due to defects in the design or manufacture of lithium-ion batteries, or lithium dendrites, which cause damage to the diaphragm , where a short circuit between the positive and negative electrodes occurs, which is the most dangerous. In this case, because the energy of the entire battery is released through this short-circuit point (up to 70% of the energy will be released within 60s [1]), so the temperature here rises rapidly, and then the positive and negative active substances are triggered. , electrolyte by decomposition, thermal runaway caused by a lithium ion battery.

Since the short circuit occurs inside the lithium ion battery, it is difficult to simulate the damage caused by the internal short circuit by external action. For example, a common acupuncture experiment, in the process of needle penetration, a short circuit occurs at a point first, but with The needle is inserted into the inside of the battery. At this time, multiple short-circuits occur in the battery at the same time, so that the current density is greatly reduced. In addition, the needle also takes away some of the heat generated by the short circuit. Therefore, the needle test is simply "compared to the internal short circuit". Too gentle."


During the extrusion test, as the deformation of the battery increases, the diaphragm mechanically fails, causing a short circuit inside the battery, but the short-circuit point caused by the extrusion generally has a large area, or multiple points are simultaneously short-circuited, so Short-circuit current caused by the extrusion test is also greatly reduced [2], so the extrusion test cannot perfectly simulate the short circuit in the lithium-ion battery.

Brief Discussion on Internal Short Circuit Simulation of Lithium Ion Battery


It can be seen that the common safety test method does not simulate the internal short circuit of the lithium ion battery, or the evaluation standard is not strict enough. Whether it is the extra material introduced in the production process or the lithium dendrites generated during the process, in essence, the short circuit inside the lithium ion battery is caused by the excess inside the battery core (especially the conductive excess). According to this, the Japanese Battery Association proposed a method for simulating a short circuit in a lithium ion battery. After the battery core is taken out, a small piece of metal is placed inside the battery core, and then placed in the battery case, and finally the battery is Put it into the extrusion equipment and apply pressure to the battery until the battery is short-circuited. The method can accurately simulate the situation of internal short circuit of the lithium ion battery, but since the method needs to disassemble the battery, the method is rarely used to evaluate the battery in actual production.

Brief Discussion on Internal Short Circuit Simulation of Lithium Ion Battery


Other methods that can simulate a short circuit in a lithium-ion battery, most of which also require the introduction of excess material inside the battery, such as Sandia National Laboratory to introduce Wood's metal (the metal melting point is only 70 degrees Celsius) excess in the battery. The National Renewable Energy National Laboratory NREL simulates a short circuit in a lithium-ion battery by introducing a phase change material into the cell. In general, these methods need to open the battery and introduce excess material, so it is lack of operation in practical applications. Sex [3].

In order to solve the practical problem, the traditional extrusion test parameters of Wei Cai et al. [4] of Oak Ridge National Laboratory were optimized to produce a diameter of 1- between the two electrodes inside the lithium ion battery. 2mm short-circuit point, and can produce short-circuit points of different sizes by adjusting the experimental parameters. The experimental mode is shown in the figure below.

Brief Discussion on Internal Short Circuit Simulation of Lithium Ion Battery


The key to the internal short-circuit simulation method proposed by Wei Cai et al is the timing of stopping the extrusion. The following figure is a picture of stopping the extrusion when the battery voltage drops to 1.0V (top) and 3.0V (bottom) respectively. After the battery voltage drops to 1.0V, the hole through which the diaphragm is burned through is significantly larger. When the 3.0V is cut off, the hole through which the diaphragm is burned through is about 1-2 mm, which is closer to the size of the short circuit point in the actual internal short circuit. The main advantage of this method is to simulate the short circuit inside the lithium ion battery without destroying the battery, which greatly improves the practicability of the method.

Brief Discussion on Internal Short Circuit Simulation of Lithium Ion Battery


In order to more accurately simulate the occurrence of short circuit in lithium ion batteries, a wax-based internal short circuit device has been developed. The melting point of wax is only about 57 °C, so it is only necessary to heat the lithium ion battery to a very low temperature. After melting, the internal short circuit of the lithium ion battery can be induced. Experiments have shown that while the battery is heated to the melting point of the wax, the lithium ion battery has an internal short circuit and the battery temperature rises rapidly [5]. The biggest advantage of this method is that it can restore the true internal short circuit of the lithium ion battery to the utmost extent, and the method also has the characteristics of simple and easy operation. It is only necessary to add the device in the battery core when manufacturing the lithium ion battery. , greatly improving the practicality of the method. Especially in the case of short circuit in a battery in an analog battery pack, this method is almost the only feasible simulation method at present.

Brief Discussion on Internal Short Circuit Simulation of Lithium Ion Battery


Excessive substances, lithium dendrites, etc. inside the lithium ion battery due to manufacturing defects or design defects are the most common causes of internal short circuits in lithium ion batteries, such as the Boeing 787 Dreamliner lithium ion battery fire incident in Boston. The letter is caused by lithium dendrites generated by lithium ion batteries charging at low temperatures, resulting in internal short circuits. With the popularity of 
electric vehicles , similar security incidents will continue to occur. How to reduce the loss caused by lithium-ion batteries in the event of internal short circuit is a problem that our lithium-ion battery designers need to consider, so for lithium-ion batteries The simulation of internal short circuit becomes more important. In light of the above introduction, Xiaobian believes that wax-based internal short-circuiting equipment (ISCD) is a more feasible method. This device can be added in the process of lithium-ion battery production, only need to be lithium ion. The lower temperature of the battery can induce the internal short circuit of the lithium ion battery, so it is very practical, especially when an internal short circuit occurs in a battery in the analog battery pack, this method is almost the only feasible method.

Previous: Lithium battery charging and discharging principle, lithium battery working principle
Next: Can overcome surface heating and discover new lithium battery materials in Korea
主站蜘蛛池模板: 亚洲成人第一区 | 中文字幕丰满乱子伦无码专区 | 玩超薄丝袜人妻的经历 | 黄色一级毛片 | 欧美激情做真爱牲交视频 | 国产精品免费视频一区 | 国产在线无码一区二区三区 | 免费se99se| 久精品久久 | 国产精品一二三区 | 军营医生(1976) | 中文字幕一区二区三区久久蜜桃 | 日本aaaa片毛片免费观蜜桃 | 蜜桃视频在线观看一区 | 大胸少妇午夜三级 | 国产情侣作爱视频免费观看 | 蜜桃视频在线一区 | 久久精品无码中文字幕老司机 | 中文字幕免费av | 免费看片A级毛片免费看 | 亚洲乱码一区二区三区在线观看 | 在线?看视频91 | 特黄一级免费视频 | 图片小说校园激情都市 | 中国xxxx性xxxxx高清视频 | 午夜影院0606免费 | 亚洲丁香婷婷综合久久 | 午夜小片| 久久av日韩 | 在线免费看av不卡 | 亚洲国产精品VA在线观看黑人 | 高清成人爽a毛片免费 | 免费av资源| 亚洲精品com | 成人一级片视频 | 99久久无码一区人妻A片蜜臀 | 亚洲国产精品综合久久20 | a级国产毛片 | 91麻豆精品国产91久久久资源速度 | 91亚洲精华国产精华精华液 | 麻豆乱码国产一区二区三区的优势 |